Lecture 15: Shearer's Lemma: Examples

• • = • • = •

э

- Let $\mathcal{F} \subseteq 2^{[n]}$
- For every $i \in [n]$, we have $|\{F : i \in F \in \mathcal{F}\}| \ge t$
- Shearer's Lemma:

$$H(X_1,\ldots,X_n) \leq \frac{1}{t} \sum_{F \in \mathcal{F}} H(X_F)$$

< 日 > < 同 > < 回 > < 回 > < 回 > <

э

- Let $\mathcal{A} \subseteq 2^{[n]}$
- Let $\operatorname{trace}_F(\mathcal{A}) = \{F \cap A \colon A \in \mathcal{A}\}$
- Combinatorial Shearer's Lemma:

$$|\mathcal{A}| \leqslant \left(\prod_{F \in \mathcal{F}} |\mathsf{trace}_F(\mathcal{A})|\right)^{1/t}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Independent Sets in Bipartite Graphs

- Let i(H) be the number of independent sets of a graph H
- Let G = (A, B, E) be a *d*-regular bipartite graph with |A| = |B| = m

Theorem (Kahn and Lawrenz)

$$i(G) \leqslant (2^{d+1}-1)^{m/d}$$

• Tight when G is m/d copies of $K_{d,d}$ because $i(K_{d,d}) = (2^{d+1} - 1)$

イロト イポト イヨト イヨト

Proof

- Let X be a uniformly chosen independent set of G
- X can be interpreted as (X_v: v ∈ V(G)), where X_v is 1 if v ∈ X, otherwise X_v is 0
- We can write $\log i(G) = H(X) = H(X_A|X_B) + H(B)$
- We can write: $H(X_A|X_B) \leq \sum_{v \in A} H(X_v|X_B) \leq \sum_{v \in A} H(X_v|X_{N(v)})$
- By Shearer's Lemma: $H(B) \leq \frac{1}{d} \sum_{v \in A} H(X_{N(v)})$
- Overall, we have: $\log i(G) \leq \frac{1}{d} \sum_{v \in A} dH(X_v | X_{N(v)}) + H(X_{N(v)})$
- Next, we analyze the term being summed

Proof (continued)

- Let \vec{S} represent which vertices in $X_{N(v)}$ are included in X
- Let $e(\overrightarrow{S})$ represent the number of possible choices for X_v when $X_{N(v)} = \overrightarrow{S}$
- Note that if \overrightarrow{S} is non-empty then $e(\overrightarrow{S}) = 1$, because $X_v = 0$ if $X_{N(v)} = \overrightarrow{S}$; if \overrightarrow{S} is empty then $e(\overrightarrow{S}) = 2$, because $X_v = 0$ or $X_v = 1$ if $X_{N(v)} = \overrightarrow{S}$
- Note that: $H(X_{N(v)}) = \sum_{\overrightarrow{S}} p(\overrightarrow{S}) \log \frac{1}{p(\overrightarrow{S})}$
- Note that: $dH(X_v|X_{N(v)}) = \sum_{\overrightarrow{S}} dp(\overrightarrow{S})H(X_v|X_{N(v)} = \overrightarrow{S}) \leq \sum_{\overrightarrow{S}} p(\overrightarrow{S}) \log e(\overrightarrow{S})^d$ • So, we have: $dH(X_v|X_{N(v)}) + H(X_{N(v)}) = \sum_{\overrightarrow{S}} p(\overrightarrow{S}) \log \frac{e(\overrightarrow{S})^d}{p(\overrightarrow{S})} \leq_{(*)} \log \sum_{\overrightarrow{S}} e(\overrightarrow{S})^d = \log i(K_{d,d})$, where (*) is due to Jensen's Inequality
- Overall, we get: $\log i(G) \leq \frac{1}{d} \sum_{v \in A} \log i(K_{d,d}) = \log i(K_{d,d})^{m/d}$

Lecture 15: Shearer's Lemma: Examples

q-Colorings of Bipartite Graphs

Let c_q(H) be the number of q-colorings of a graph H
Let G = (A, B, E) be a d-regular bipartite graph with |A| = |B| = m

Theorem (Galvin and Tetali)

 $c_q(G) \leqslant c_q(K_{d,d})^{m/d}$

• Note that the inequality is tight when G is m/d copies of $K_{d,d}$

< ロ > (同 > (回 > (回 >))) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) (回 >) (回 >)) = (回 > (回 >)) (回 >) (回 >)) = ((\Pi >)) (((\Pi >))) (((\Pi >)) ((((\Pi >)))

Proof

- Let X be a uniformly chosen q-coloring of G
- Let X ≡ (X_v: v ∈ V(G)) where X_v corresponds to the color of vertex v
- So, we have $\log c_q(G) = H(X) = H(X_A|X_B) + H(X_B)$
- Note that: $H(X_A|X_B) \leq \sum_{v \in A} H(X_v|X_B) \leq \sum_{v \in A} H(X_v|X_{N(v)})$
- By Shearer's Lemma: $H(X_B) \leq \frac{1}{d} \sum_{v \in A} H(X_{N(v)})$
- So, overall we have: $\log c_q(G) \leq \frac{1}{d} \sum_{v \in A} dH(X_v | X_{N(v)}) + H(X_{N(v)})$
- Next, we analyze the term being summed

소리 에 소리에 이 소 물 에 드 이 다.

Proof (continued)

- Let \overrightarrow{C} be a *q*-coloring of N(v)
- Then, we have: $H(X_{N(v)}) = \sum_{\overrightarrow{C}} p(\overrightarrow{C}) \log \frac{1}{p(\overrightarrow{C})}$
- Let $e(\overrightarrow{C})$ be the number of different possible colorings of v given \overrightarrow{C}
- Then, we have: $dH(X_v|X_{N(v)}) = \sum_{\overrightarrow{C}} dp(\overrightarrow{C})H(X_v|X_{N(v)}) = \overrightarrow{C} \otimes \sum_{\overrightarrow{C}} p(\overrightarrow{C}) \log e(\overrightarrow{C})^d$
- Summing: $dH(X_{\nu}|X_{N(\nu)}) + H(X_{N(\nu)}) \leq \sum_{\overrightarrow{C}} p(\overrightarrow{C}) \log \frac{e(\overrightarrow{C})^d}{p(\overrightarrow{C})} \leq_{(*)} \log \sum_{\overrightarrow{C}} e(\overrightarrow{C})^d = \log c_q(K_{d,d}),$ where (*) is by Jensen's Inequality
- Overall, we get the upper bound: $\log c_q(G) \leq \frac{1}{d} \sum_{v \in A} \log c_q(K_{d,d}) = \log c_q(K_{d,d})^{m/d}$

・ロト ・ 一日 ・ ・ 日 ・

• Is this symptomatic of a more general phenomenon?

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

э