Lecture 15: Shearer's Lemma: Examples

- Let $\mathcal{F} \subseteq 2^{[n]}$
- For every $i \in[n]$, we have $|\{F: i \in F \in \mathcal{F}\}| \geqslant t$
- Shearer's Lemma:

$$
H\left(X_{1}, \ldots, X_{n}\right) \leqslant \frac{1}{t} \sum_{F \in \mathcal{F}} H\left(X_{F}\right)
$$

Combinatorial Shearer's Lemma

- Let $\mathcal{A} \subseteq 2^{[n]}$
- Let $\operatorname{trace}_{F}(\mathcal{A})=\{F \cap A: A \in \mathcal{A}\}$
- Combinatorial Shearer's Lemma:

$$
|\mathcal{A}| \leqslant\left(\prod_{F \in \mathcal{F}}\left|\operatorname{trace}_{F}(\mathcal{A})\right|\right)^{1 / t}
$$

Independent Sets in Bipartite Graphs

- Let $i(H)$ be the number of independent sets of a graph H
- Let $G=(A, B, E)$ be a d-regular bipartite graph with $|A|=|B|=m$

Theorem (Kahn and Lawrenz)

$$
i(G) \leqslant\left(2^{d+1}-1\right)^{m / d}
$$

- Tight when G is m / d copies of $K_{d, d}$ because $i\left(K_{d, d}\right)=\left(2^{d+1}-1\right)$
- Let X be a uniformly chosen independent set of G
- X can be interpreted as $\left(X_{v}: v \in V(G)\right)$, where X_{v} is 1 if $v \in X$, otherwise X_{v} is 0
- We can write $\log i(G)=H(X)=H\left(X_{A} \mid X_{B}\right)+H(B)$
- We can write:

$$
H\left(X_{A} \mid X_{B}\right) \leqslant \sum_{v \in A} H\left(X_{v} \mid X_{B}\right) \leqslant \sum_{v \in A} H\left(X_{v} \mid X_{N(v)}\right)
$$

- By Shearer's Lemma: $H(B) \leqslant \frac{1}{d} \sum_{v \in A} H\left(X_{N(v)}\right)$
- Overall, we have:
$\log i(G) \leqslant \frac{1}{d} \sum_{v \in A} d H\left(X_{v} \mid X_{N(v)}\right)+H\left(X_{N(v)}\right)$
- Next, we analyze the term being summed

Proof (continued)

- Let \vec{S} represent which vertices in $X_{N(v)}$ are included in X
- Let $e(\vec{S})$ represent the number of possible choices for X_{v} when $X_{N(v)}=\vec{S}$
- Note that if \vec{S} is non-empty then $e(\vec{S})=1$, because $X_{v}=0$ if $X_{N(v)}=\vec{S}$; if \vec{S} is empty then $e(\vec{S})=2$, because $X_{v}=0$ or $X_{v}=1$ if $X_{N(v)}=\vec{S}$
- Note that: $H\left(X_{N(v)}\right)=\sum_{\vec{S}} p(\vec{S}) \log \frac{1}{p(\vec{S})}$
- Note that: $d H\left(X_{v} \mid X_{N(v)}\right)=\sum_{\vec{s}} d p(\vec{S}) H\left(X_{v} \mid X_{N(v)}=\vec{S}\right) \leqslant$ $\sum_{\vec{S}} p(\vec{S}) \log e(\vec{S})^{d}$
- So, we have: $d H\left(X_{v} \mid X_{N(v)}\right)+H\left(X_{N(v)}\right)=$ $\sum_{\vec{S}} p(\vec{S}) \log \frac{e(\vec{S})^{d}}{p(\vec{S})} \leqslant{ }_{(*)} \log \sum_{\vec{S}} e(\vec{S})^{d}=\log i\left(K_{d, d}\right)$, where $(*)$ is due to Jensen's Inequality
- Overall, we get:
$\log i(G) \leqslant \frac{1}{d} \sum_{v \in A} \log i\left(K_{d, d}\right)=\log i\left(K_{d, d}\right)^{m / d}$

q-Colorings of Bipartite Graphs

- Let $c_{q}(H)$ be the number of q-colorings of a graph H
- Let $G=(A, B, E)$ be a d-regular bipartite graph with $|A|=|B|=m$

Theorem (Galvin and Tetali)

$$
c_{q}(G) \leqslant c_{q}\left(K_{d, d}\right)^{m / d}
$$

- Note that the inequality is tight when G is m / d copies of $K_{d, d}$
- Let X be a uniformly chosen q-coloring of G
- Let $X \equiv\left(X_{v}: v \in V(G)\right)$ where X_{v} corresponds to the color of vertex v
- So, we have $\log c_{q}(G)=H(X)=H\left(X_{A} \mid X_{B}\right)+H\left(X_{B}\right)$
- Note that:

$$
H\left(X_{A} \mid X_{B}\right) \leqslant \sum_{v \in A} H\left(X_{v} \mid X_{B}\right) \leqslant \sum_{v \in A} H\left(X_{v} \mid X_{N(v)}\right)
$$

- By Shearer's Lemma: $H\left(X_{B}\right) \leqslant \frac{1}{d} \sum_{v \in A} H\left(X_{N(v)}\right)$
- So, overall we have:
$\log c_{q}(G) \leqslant \frac{1}{d} \sum_{v \in A} d H\left(X_{v} \mid X_{N(v)}\right)+H\left(X_{N(v)}\right)$
- Next, we analyze the term being summed
- Let \vec{C} be a q-coloring of $N(v)$
- Then, we have: $H\left(X_{N(v)}\right)=\sum_{\vec{C}} p(\vec{C}) \log \frac{1}{p(\vec{C})}$
- Let $e(\vec{C})$ be the number of different possible colorings of v given \vec{C}
- Then, we have: $d H\left(X_{v} \mid X_{N(v)}\right)=\sum \vec{c} d p(\vec{C}) H\left(X_{v} \mid X_{N(v)}=\right.$ $\vec{C}) \leqslant \sum \vec{C} p(\vec{C}) \log e(\vec{C})^{d}$
- Summing: $d H\left(X_{v} \mid X_{N(v)}\right)+H\left(X_{N(v)}\right) \leqslant$
$\sum_{\vec{c}} p(\vec{C}) \log \frac{e(\vec{C})^{d}}{p(\vec{C})} \leqslant(*) \log \sum_{\vec{c}} e(\vec{C})^{d}=\log c_{q}\left(K_{d, d}\right)$, where $(*)$ is by Jensen's Inequality
- Overall, we get the upper bound:
$\log c_{q}(G) \leqslant \frac{1}{d} \sum_{v \in A} \log c_{q}\left(K_{d, d}\right)=\log c_{q}\left(K_{d, d}\right)^{m / d}$
- Is this symptomatic of a more general phenomenon?

